

A Real Time Communication Protocol for the Virtual Missile Range

Jim Ledin
Naval Air Warfare Center
Weapons Division
Point Mugu, CA

Virtual Missile Range (VMR)

- Shortfall of target and missile allocations for training and test and evaluation are impacting readiness, budget and schedules
- VMR Purpose: Provide a low cost supplement to live fire exercises for test and evaluation and training
- Initial Implementation: SeaSparrow missile system, Spruance-class destroyers, NAWCWD Sea Range
- Expandable to include a variety of weapons, threats, and platforms

2

NATO SeaSparrow Missile System

VMR Operational Configuration

VMR Location Near San Nicolas Island

ESSM/Sparrow Hardware-in-the-Loop (HIL) Laboratory

Major Components

- Missile guidance system on a 3axis motion table
- Anechoic chamber with 48-horn target array
- High performance, real-time computer system

RF Signals Simulate

- Target skin returns
- Sea clutter
- Sea image
- Electronic Countermeasures

ESSM/Sparrow HIL Laboratory

- High fidelity NATO SeaSparrow Simulation
- Exercises missile seeker and guidance hardware and tactical software from pre-launch through intercept
- Currently used for RIM-7P DT/OT and ESSM DT support (average 10,000 shots per year)
- Provides missile system evaluation including end-game
- Receives pre-launch umbilical signals from the shipboard fire control system

ESSM/Sparrow HIL Laboratory

VMR Network Performance Requirements

- SeaSparrow is a highly dynamic missile
- Launch sequence timing must be accurate
- Network latency may have negative impact on validity of simulation results
- This concern drives a requirement for the maximum acceptable latency
- Latency requirement: No more than 10 milliseconds one-way latency in Ship-HIL and Target Generator-HIL paths

9

HLA Performance Testing

- Early versions of HLA (in 1997) were tested for real time latency performance
- Testing has continued with more recent versions
- Latest version tested: RTI-NG 1.3v3.2
- Recent test tool: BmLatency benchmark
- Test platform: 400 MHz Pentium II, NT4
- Latency test results: Min: 10 mS, Mean: 10.09

mS, Max: 20 mS

Real Time Simulation Protocol

- HLA performance was (and remains) unacceptable for VMR
- A new protocol was developed: The Real Time Simulation Protocol (RTSP)
- RTSP Features:
 - UDP Multicast for bandwidth efficiency
 - Efficient runtime operation
 - Platform independence (byte-ordering and structure packing issues automatically handled)
 - Easy to use
 - Possible to use in conjunction with HLA RTI

RTSP Elements

Message Definition Format (MDF) file

Completely defines simulation message traffic

MDF Translator program

Parses the MDF file and generates C++ code

RTSP runtime software

C++ code performs network communication and other functions

Controller application

Controls operation of distributed simulation

Message Definition Format

- MDF is a text file format for specifying the federates and messages used in a distributed simulation
- UDP Multicast parameters such as IP addresses and port numbers, and time-to-live can be specified in the MDF file
- Each federate is declared and given a name

VMR MDF File (Part I)

```
// VMR Federation Message Definition, Version 1.2
// Jim Ledin
                                    27 Apr 1999
// Define the base IP address and port for multicast groups.
multicast_base_addr = 225.0.0.0;
multicast_base_port = 12000;
// Declare names for all federates and array sizes, if any:
federate Ship, Missile, Target, Viewer;
// Define a federate state structure for use in multiple messages
struct State
    double latitude; // Deg. North
    double longitude;
                      // Deg. East
   float altitude;
                      // Feet above MSL
   float vel[3]; // Feet/Sec, 0=North, 1=East, 2=Down; Earth-relative
   float euler[3];
                       // Deg. 0 = Roll (+CW looking fwd),
                               1 = Pitch(+nose up),
                       //
                               2 = Yaw(+East of true North)
};
```

VMR MDF File (Part II)

```
// Ship update message
message Ship. Update
{
    State
           state;
    float
          launcher_az; // Deg., Azimuth +right of fwd, deck-relative
    float
          launcher_el; // Deg., Elevation +up from horizontal, deck-relative
    float
          illum_az; // Deg., Azimuth +right of fwd, deck-relative
    float
          illum_el; // Deg., Elevation +up from horizontal, deck-relative
    uchar illum_on; // 1 = illuminator is on, 0 = not on
};
// The Ship gets the missile umbilical data and updates from all Targets
subscribe Ship: Missile. Umbilical, Target. Update;
// The Missile gets the umbilical data and updates from Ship and Targets
subscribe Missile: Ship. Umbilical, Ship. Update, Target. Update;
// The Targets get the Ship updates and the kill indication from the missile
subscribe Target: Ship. Update, Missile. EndOfRun;
// The Viewer gets all messages sent by all federates
subscribe Viewer : *.*;
```

MDF Translator Program

- The MDF Translator reads an MDF file and creates a set of C++ class header files
- These classes provide the interface for sending and receiving the messages defined in the MDF file
- Each simulation must be compiled with the appropriate class header files and the RTSP runtime software module

RTSP Runtime Software

- The RTSP runtime software is contained in the file RTSP.cpp
- This software provides network communication for the C++ classes generated from the MDF file
- The RTSP software is portable between Windows NT, Unix (Solaris), and VxWorks

Controller Application

RTSP Performance

- The use of UDP Multicast allows one message to go to many recipients
- Polling can be avoided by using callbacks
- Processing of incoming and outgoing messages is exceptionally efficient
- Latency: Min: 0.05 mS; Mean: 0.1 mS; Max: 0.25 mS
- RTSP is 10 to 100 times faster than HLA RTI

Summary

- Missile simulation in VMR requires a high performance network communication protocol
- HLA RTI performance remains inadequate
- The Real Time Simulation Protocol meets the VMR performance requirements and is easy to use

